Team 21: Autonomous RoboSub Final Presentation Fall 2012

Team Members: Santiago Franco, Darryl McGowan, Kyle Miller, Sondra Miller, Gregory Robertson, Stuart Royal, Alex Smith **Advisors:** Dr. Clark, Dr. Frank, Dr. Harvey

Competition

- 15th Annual AUVSI RoboSub Competition
- Held in San Diego July 22-28, 2013
- 7 tasks making use of camera, depth sensor torpedoes, claw, marker dropper, and hydrophones
- Current rules have not yet been released

Competition Tasks

- Maneuvering through a gate
- Line following on ground
- Buoy ramming
- Maneuvering around obstacles
- Dropping markers in specific location
- Shooting a target
- Picking up specified objects
- Moving towards a pinger and surfacing

Current Design

CAD drawing of Assembly

Hull and Frame

- New Hull design
 - \circ Simpler
 - \circ More accessible
 - Better!

Thrusters

SeaBotix SBT150

- Max Amp.: 5.8A(30 sec duration)
- Max Cont. Amp.: 4.25A
- Max Power: 150W(each motor)
- Total of 4 thrusters

Claw and Torpedo Launcher

- Both custom made by last year's team
- Both powered by pneumatic actuators fed by an air tank

Torpedoes and torpedo launcher

Beacon Dropper

 Servo motor used to rotate arm to allow beacon to drop out

Bottom view of the beacon dropper

Power System

- 2x 14.8V Polymer Li-Ion batteries
 - Only powering thrusters
 - Only using 1 at a time
 - o 30A Max Discharge rate
- 1x 19v 4Ah Li-Ion External Laptop Battery
 - \circ Powers main CPU unit
 - Lasts roughly 2-3 hours
 - Essentially powers all USB devices as well
- 1x 12v Li-Ion 18650 Box Battery
 - \circ $\,$ Regulated to power all other electronics
 - Arduino
 - Actuators
 - 4A Max Discharge Rate

Power Subsystems Outline

Processing System

- Subsystem Controllers
 - Arduino UNO
 - Arduino MEGA
 - Controls all 4 thrusters
 - Directly connected to IMU
 - Stabilizes sub movement

	6-27-6	Atterner			
TXO	Serial			10 a a	-
Ø3.30		Ciananni,			
	Pr iP	4	P ^{ring}	8 🚝 -	- 1
BLK		0		×1 ⊕z	

- Main System Controller
 - Intel i3 2330M, 8GB Ram, Wifi, 6 USB Ports
 - o Controls all subsystems
 - Contains top level controller

- Inertial Measurement Unit
 - Razor 9DOF IMU
 - Acceleration along 3 axes
 - rotation about all 3 axes

Sensors

- Depth sensor
 - IMCL submersible pressure transducer
 - \circ feeds voltages to Arduino

- Hydrophones
 - Sensortech SQ26hydrophones
 - Passive locating
 - 4 used for 3-dimensional localization

Cameras

Logitech C615 Webcam

- Using two: one for frontal view, one for ground view
- Will send video for running vision processing

Vision Program

- Running OpenCV software using C++
- Ability to recognize colors and shapes
- Used for location of, direction to, and identification of objectives

Communication Subsystem

- Safety of AUVSI divers is a primary concern
 - Low-impact torpedo system
 - Non-toxic sealants
 - Safety shrouds covering blades on all thrusters
 - Exterior kill switch for entire system
- Safety of components
 - Rigid exterior frame
 - Watertight o-ring
 - \circ Separated power systems

Environmental Concerns

- Toxicity of components, sealants, and adhesives
 - standard aluminum
 - non-toxic sealants
- Disposal and recyclability of components
 - Proper disposal of batteries in future years
 - Aluminum hull and frame can be reused or recycled

Future Plans

- Complete the fabrication and testing of the physical design
- Interface with all sensors
- Recognize objects and colors underwater
- Perform trial runs designed to resemble actual competition conditions
- Go To Competition!

Questions

Sources

 [1] OpenCV Shape Recognition. *Image*. http://www.emgu.com/wiki/images/thumb/ShapeDetectionExample.png/ 300px-ShapeDetectionExample.png

[2] Recycling. Image. http://www.sunsetscavenger.com/green_cart/images/recycling_logo_eart h_300x300.gif

[3] Question Mark. *Image*. http://upload.wikimedia.org/wikipedia/en/a/af/Question_mark.png

[4] IMCL Submersible Pressure Transducer. *Image*. http://www.sensorsone.com/wp-content/uploads/2012/02/IML-500px.jpg

[5] Razor 9DOF IMU. *Image*. http://static3.watterott.com/09510-02-Working.jpg